Towards Easy Leakage Certification

F. Durvaux, *F.-X. Standaert*, S. Merino Del Pozo UCL Crypto Group, Belgium

CHES 2016, Santa Barbara, USA

- 1. Introduction & motivation
- 2. (Easy) Leakage certification
- 3. Experiments
 - Simulations
 - Unprotected software
 - Masked hardware
- 4. Conclusions

1. Introduction & motivation

2. (Easy) Leakage certification

3. Experiments

- Simulations
- Unprotected software
- Masked hardware
- 4. Conclusions

Standard DPA

executed operations

executed operations

executed operations

executed operations

executed operations

Why do we care?

Why do we care?

model: $m_i^{k^*}$

model: $m_i^{k^*} \longrightarrow \text{Hyp. 1: key candidates}$

Hyp. 2: implementation

• For the key candidates, we try them all

• But it is impossible to try all models! [W12]

[W12] M. Wagner, 700+ Attacks Published on Smart Cards: The Need for a Systematic Counter Strategy, COSADE 2012.

Why do we care?

 \Rightarrow How to be sure the model is "good enough"?

Why do we care? (II)

• Does it really happen in practice?

Why do we care? (II)

• Does it really happen in practice?

• Each time a model performs better than another

Why do we care? (II)

 \Rightarrow How to be sure the model is "good enough"?

Model optimality caveats

• A model is optimal if $\widehat{\Pr}_{model} [l|k] = \Pr_{chip} [l|k]$

- $\Rightarrow \text{Theory would say it is } \varepsilon \text{-close to optimal if}$ $SD(\widehat{\Pr}_{model} [l|k], \Pr_{chip} [l|k]) < \varepsilon$
- (with SD a statistical distance)

Convenient since ε would quantify the loss
That could be reported in SR bounds [DFS15]

[DFS15] A Duc, S. Faust, F.-X. Standaert, *Making Masking Security Proofs Concrete* [...], EUROCRYPT 2015.

Model optimality caveats

• Problem: $\Pr_{chip}[l|k]$ is unknown

1. Introduction & motivation

2. (Easy) Leakage certification

3. Experiments

- Simulations
- Unprotected software
- Masked hardware

4. Conclusions

Leakage certification [DSV14]

- Distinguish estimation & assumption errors
 - Recall estimation errors decrease with # meas.

No samples

estimation errors dominate

 \Rightarrow need to measure more

$N_1 > N_0$ samples

assumption errors dominate

 \Rightarrow need another model

Leakage certification [DSV14]

⇒good enough model: *ass. err << est. err*. given *N*

• Test the hypothesis that

 $\widehat{\Pr}_{model}[l|k] \stackrel{\scriptscriptstyle N}{=} \Pr_{chip}[l|k]$

- Output a p-value p(N)
 - Small p's indicate hyp. is likely incorrect

• Output a p-value p(N) Eval. lab. limit

• Main drawback: cost (of sampling distributions)

Towards easy certification

Towards easy certification

- Compare moments (rather than distributions)
 - 1. $\widehat{M}_d \stackrel{N}{\leftarrow} \widehat{\Pr}_{model} [l|k]$ 2. $\widetilde{M}_d \stackrel{N}{\leftarrow} \Pr_{chip} [l|k]$
- 3. Test equality $\widehat{M}_d = \widetilde{M}_d$

- + Can be done with simple univariate tests
 - e.g., T-test (assuming \widehat{M}_d , \widetilde{M}_d are Gaussian)

— Is it theoretically sound? No!

— Is it theoretically sound? No!

- But counterexamples are involved
- & SCA literature frequently does it
 - Leakage detection, HO attacks, ... [SM15]

[SM15] T. Schneider, A. Moradi, *Leakage Assessment Methodology* [...], CHES 2015.

1. Introduction & motivation

2. (Easy) Leakage certification

3. Experiments

- Simulations
- Unprotected software
- Masked hardware

4. Conclusions

Simulated example

Simulated example (II)

Simulated example (III)

Simulated example (IV)

1. Introduction & motivation

2. (Easy) Leakage certification

3. Experiments

Simulations

Unprotected software

Masked hardware

4. Conclusions

Software experiments

• Repeating the Eurocrypt 2014 case study

Software experiments

• Unprotected AES implementation, Atmel AVR

Unprotected AES implementation, Atmel AVR

Unprotected AES implementation, Atmel AVR

Unprotected AES implementation, Atmel AVR

- Eurocrypt 2014: no errors detected with up to 256x1000 measurements & Gaussian template
- CHES 2016: small errors in \widetilde{M}_3 and \widetilde{M}_4
- \Rightarrow Is there an inconsistency in our results?
- \Rightarrow Do these errors lead to significant information loss

• Additional test: Moments-Correlating DPA [MS14]

$$\mathsf{MPC-DPA}(d) = \hat{\rho}(\hat{M}_d, l^d)$$

• Metric intuition: $N_s = \frac{c}{\widehat{\rho}(\widehat{M}_d, l^d)^2}$

[MS14] A. Moradi, F.-X. Standaert, Moments-Correlating DPA, IACR ePrint Archive, 2014.

Software experiments (III)

moments-correlating DPA

little information in skewness/kurtosis

Software experiments (III)

moments-correlating DPA

1. Introduction & motivation

2. (Easy) Leakage certification

3. Experiments

- Simulations
- Unprotected software
- Masked hardware

4. Conclusions

Masked hardware experiments

• 1st-order secure threshold implementation [P+11]

15

[P+11] A. Poschmann et al., Side-Channel Resistant Crypto for Less than 2,300 GE, Journal of Cryptology, 2011.

Masked hardware experiments

1st-order secure threshold implementation [P+11]

[P+11] A. Poschmann et al., Side-Channel Resistant Crypto for Less than 2,300 GE, Journal of Cryptology, 2011.

Masked hardware experiments (II)

Masked hardware experiments (II)

critical model errors for the Gaussian templates

As expected since GT capture only 2 moments
⇒ More complex models needed in this case [S+16]

16

[S+16] T. Schneider et al., Bridging the Gap: Advanced Tools for Side-Channel Leakage Estimation [...], SAC 2016.

1. Introduction & motivation

2. (Easy) Leakage certification

3. Experiments

- Simulations
- Unprotected software
- Masked hardware

4. Conclusions

Wrapping up

• Less formal but more efficient/intuitive tool

Wrapping up

- Less formal but more efficient/intuitive tool
 - \approx as efficient as profiled CPA
 - (But still benefits from POI detection)
 - Provides hints about the information losses

 Prototype open source code: <u>http://perso.uclouvain.be/fstandae/PUBLIS/171.zip</u>

- Open problems: how to efficiently deal with multivariate & higher-order distributions
- Moment- vs. distribution-based evaluations?

PS. No assumption errors if non-parametric estimations
leakage trace

executed operations